Point-to-Point Networks

Theoretically, these systems are the most reliable because there is only one single point of failure in the topology—the host itself (see Figure 1). You can improve the system by adding redundant hosts, but wiring two hosts can be a problem. The 4–20 mA standard allows multiple readout circuits if the standard loads are used at each readout. Problems can arise if readout devices load the circuit beyond its capability, but most designers are familiar with the limitations and are sufficiently careful.
Figure 2. In a multidrop network, each sensor node puts its information onto a common medium. This requires careful attention to protocols in hardware and software. The single-wire connection represents a potential single-point failure. But some vendors supply redundant connections to mitigate this potential problem.

Some networks provide frequency-modulated (FM) signals on the wires to carry multiple sensor readings on separate FM channels. Some standards (e.g., the HART bus) support multiplexing of digital signals on the existing analog wiring in older plants. These architectures blur the distinction between point-to-point and multidrop networks.

Early wireless networks were simple radio-frequency (RF) implementations of this topology. These networks used RF modems to convert the RS-232 signal to a radio signal and back again. Fluke (Everett, Wash ington) developed a digital voltmeter that could be configured to accept a voltage signal and transmit the signal over a dedicated radio frequency channel. The reliability of these implementations was sometimes suspect because most were designed with simple FM coding. Interference and multipath propagation effects caused significant degradation in factory environments, so many networks proved to be unreliable unless designers were particularly careful. The Federal Communications Commission licensed companies and devices to operate at the allocated frequencies.

Complete wireless local area networks (LANs) were implemented using this technique.These were successful in the office environment but didn’t fare as well in factories. Many designers implemented remote data acquisition systems with this topology by using a data concentrator in the field to feed the data to a radio transmitter for transmission to the hosts, where the signals were demultiplexed into the original sensor signals.