Multidrop Networks

Multidrop buses began to appear in the late 70s and early 80s. One of these, Modbus from Modicon (Schneider Auto mation, North Andover, Massa chusetts), led the way into the industrial sphere, followed by several proprietary and open buses (e.g., the Manufacturing Auto mation Protocol, QBus, and VME Bus).

The emergence of intelligent sensors and microcomputers capable of operating in industrial environments irrevocably changed the sensor network landscape. Multidrop networks (buses) reduced the number of wires required to connect field devices to the host, but they also introduced another single point of failure—the cable. Several suppliers of industrial-grade products offered redundant cabling designs, but these came with an increase in complexity (see Figure 2).

Once the industry began the migration to multidrop buses, problems associated with digitization began to emerge. With the previous point-to-point systems, digitization occurred in the host, where a single clock could be used to time stamp when the analog signals from multiple sensors were acquired. With the distributed intelligence required to implement a multidrop network, synchronization of clocks became a critical issue in some applications. This remains an important design parameter for any distributed digital system.
Figure 4. An architecture consisting of a decoder for each channel and a direct-sequence spread-spectrum receiver can perform simultaneous sampling because the same baseband signal goes to each decoder. But the decoders represent a significant cost, power, and size limitation.

The introduction of Ethernet in the mid-80s was a landmark in standardization, if not technological innovation. A group of large companies agreed that the future of computer networking required an open interconnect standard that would allow multiple-vendor systems to work together with minimal difficulty.

Researchers looked closely at the carrier sense multiple access with collision detection (CSMA/CD) protocol when they investigated the behavior of networks under stress. But they considered most industrial applications too time critical for such a nondeterministic protocol. Now, fifteen years later, most factories have converted their shop floor networks to Ethernet because it is the best compromise between cost and performance. Many companies now offer solutions that use Ethernet to implement suitable robust industrial networks.

Wireless systems use the same types of protocols to implement multidrop topologies, simulating hard-wired connections with RF links. The IEEE-802.11 standard was the first wireless standard that promised to bring the interoperability of Ethernet connectivity to wireless networks. Many of these, however, are not compatible at the over-the-air level.